Human gait analysis using hybrid convolutional neural networks
Tác giả: Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, Anh V. NguyenTóm tắt:
This paper analyzes the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neural network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyze multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.
- Khảo sát lực mô-men xoắn trước và sau tải lực trong phục hình all-on-four hàm dưới
- Tăng trưởng ở trẻ sơ sinh được hồi sức sau phẫu thuật đường tiêu hóa tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Thất bại với thông khí không xâm lấn sau rút nội khí quản ở trẻ sơ sinh non tháng tại Bệnh viện Nhi Đồng 1 và các yếu tố liên quan
- Vai trò của người hướng dẫn lâm sàng ảnh hưởng đến kỹ năng giao tiếp với bệnh nhi của sinh viên khối Điều dưỡng năm cuối Đại Học Y Dược Thành Phố Hồ Chí Minh
- Nhân một trường hợp tạo nhịp bó nhánh trái – Cơ hội mới cho trẻ em Việt Nam





