Human gait analysis using hybrid convolutional neural networks
Tác giả: Khang Nguyen, Viet V. Nguyen, Nga T. Mai, An H. Nguyen, Anh V. NguyenTóm tắt:
This paper analyzes the combination of IMU sensors and electromyography sensors (EMG) to improve the identification accuracy of human movements. We propose the hybrid convolutional neural network (CNN) and long short-term memory neural network (LSTM) for the human gait analysis problem to achieve an accuracy of 0.9418, better than other models including pure CNN models. By using CNN's image classification advancements, we analyze multivariate time series sensor signals by using a sliding window to transform sensor data into image representation and principal component analysis (PCA) to reduce the data dimensionality. To tackle the dataset imbalance issue, we re-weight our model loss by the inverse effective number of samples in each class. We use the human gait HuGaDB dataset with unique characteristics, for gait analysis.
- Ảnh hưởng của hành vi hối lộ tới xác suất sống sót của doanh nghiệp nhỏ và vừa tại Việt Nam
- Tác động của thể chế đến hiệu ứng lan tỏa từ doanh nghiệp FDI đến doanh nghiệp khu vực ngoài nhà nước ở Việt Nam
- Khoảng cách vị thế việc làm trong tham gia bảo hiểm xã hội tự nguyện ở Việt Nam
- Các yếu tố quyết định tính bền vững của các doanh nghiệp siêu nhỏ, nhỏ và vừa
- Mối quan hệ giữa quản lý chuỗi cung ứng xanh và kết quả hoạt động của các doanh nghiệp xây dựng tại Việt Nam