Ứng dụng khai thác mẫu tuần tự vào việc dự đoán xu hướng cổ phiếu
Tác giả: Trần Minh Thái, Nguyễn Tuấn Dũng
Số trang:
Tr. 68 - 76
Số phát hành:
Volume 7 (N 3) - Tháng 3
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Khai thác dữ liệu, mẫu tuần tự, dự đoán xu hướng cổ phiếu, biểu đồ nến phiếu
Chủ đề:
Khai phá dữ liệu
Tóm tắt:
Đề xuất mô hình sử dụng kỹ thuật khai thác dữ liệu áp dụng vào việc dự đoán xu hướng cổ phiếu. Mô hình dự đoán dựa vào thuật toán khai thác mẫu con tuần tự trên tập dữ liệu lịch sử cổ phiếu. Bên cạnh đó, kỹ thuật xác định mẫu con thông qua độ tương tự cũng được trình bày trong bài báo. Dữ liệu thực nghiệm được thu thập trên trang https://finance.yahoo.com. Kết quả thực nghiệm của mô hình được đề xuất có độ chính xác trung bình tốt hơn so với mô hình truyền thống như SVM và LSTM.
Tạp chí liên quan
- Constrained optimization using swarm intelligence integrated with Deb’s feasibility rules developed in Python = Giải bài toán tối ưu hóa ràng buộc sử dụng trí tuệ bầy đàn kết hợp quy tắc khả thi của Deb được phát triển bằng Python
- Particle Swarm Optimization using ε constraint-handling method developed in Python = Thuật toán tối ưu hóa bầy đàn sử dụng phương pháp xử lý ràng buộc ε được phát triển với Python
- Solving constrained optimization tasks in civil engineering using ε- Differential Evolution developed with Visual C#. NET = Giải các bài toán tối ưu hóa có ràng buộc trong ngành xây dựng sử dụng thuật toán ε - tiến hóa vi phân được phát triển với ngôn ngữ
- Optimizing cantilever retaining wall design using feasibility rule-based evolutionary algorithm developed with Visual C# .NET = Tối ưu hóa thiết kế tường chắn đất sử dụng thuật toán tiến hóa được kết hợp quy tắc khả thi và phát triển với ngôn ngữ C# .NET
- IFC5 : kỳ vọng về cuộc cách mạng trao đổi thông tin trong xây dựng kỹ thuật số





