Phân lớp dữ liệu mất cân bằng trong bài báo dự đoán thuê bao rời bỏ nhà mạng dựa vào giải thuật Rừng Ngẫu Nhiên cải tiến
Tác giả: Dương Tuấn Anh, Đinh Minh HòaTóm tắt:
Trong lãnh vực viễn thông, việc thuê bao rời bỏ nhà mạng là sự cố rất đáng quan tâm vì vấn đề này có thể ảnh hưởng đến lợi nhuận của công ty. Tuy nhiên, đặc điểm dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng gây khó khăn cho việc phát triển một mô hình phân lớp hiệu quả để giải quyết bài toán này. Trong nghiên cứu này thử áp dụng giải thuật rừng ngẫu nhiên có điều chỉnh hàm chi phí (cost-sensitive weighted random forest - CSWRF), vốn đã thành công trong bài toán phát hiện gian lận thẻ tín dụng (credit card fraud detection), để giải quyết vấn đề dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng. Ngoài ra, chúng tôi so sánh hiệu quả của giải thuật CSWRF với cách tiếp cận lấy mẫu dữ liệu: kết hợp giải thuật Rừng Ngẫu Nhiên với kỹ thuật lấy mẫu tăng SMOTE. Kết quả thực nghiệm trên hai bộ dữ liệu mẫu cho thấy đối với bài toán dự đoán thuê bao rời bỏ nhà mạng, vốn là bài toán mất cân bằng dữ liệu, hiệu quả phân lớp của giải thuật CSWRF thuộc cách tiếp cận điều chỉnh hàm chi phí (cost-sensitive learning) tốt hơn phương pháp SMOTE kết hợp giải thuật Rừng Ngẫu Nhiên.
- Tác động của nguồn vốn hỗ trợ phát triển chính thức đến lượng khí thải CO2 tại các quốc gia Châu Á : tiếp cận theo ngưỡng đô thị hóa
- Tác động của thực hiện các yếu tố ESG tới hiệu quả hoạt động của ngân hàng thương mại tại khu vực châu Á
- Kinh nghiệm phát triển nền “kinh tế bạc” của Trung Quốc trong bối cảnh già hoá dân số và bài học cho Việt Nam
- Phát triển kinh tế tư nhân ở Việt Nam : đổi mới từ nhận thức đến thực tiễn
- Ứng dụng công nghệ chuỗi khối (Blockchain) trong đổi mới sáng tạo tài chính