Phân lớp dữ liệu mất cân bằng trong bài báo dự đoán thuê bao rời bỏ nhà mạng dựa vào giải thuật Rừng Ngẫu Nhiên cải tiến
Tác giả: Dương Tuấn Anh, Đinh Minh HòaTóm tắt:
Trong lãnh vực viễn thông, việc thuê bao rời bỏ nhà mạng là sự cố rất đáng quan tâm vì vấn đề này có thể ảnh hưởng đến lợi nhuận của công ty. Tuy nhiên, đặc điểm dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng gây khó khăn cho việc phát triển một mô hình phân lớp hiệu quả để giải quyết bài toán này. Trong nghiên cứu này thử áp dụng giải thuật rừng ngẫu nhiên có điều chỉnh hàm chi phí (cost-sensitive weighted random forest - CSWRF), vốn đã thành công trong bài toán phát hiện gian lận thẻ tín dụng (credit card fraud detection), để giải quyết vấn đề dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng. Ngoài ra, chúng tôi so sánh hiệu quả của giải thuật CSWRF với cách tiếp cận lấy mẫu dữ liệu: kết hợp giải thuật Rừng Ngẫu Nhiên với kỹ thuật lấy mẫu tăng SMOTE. Kết quả thực nghiệm trên hai bộ dữ liệu mẫu cho thấy đối với bài toán dự đoán thuê bao rời bỏ nhà mạng, vốn là bài toán mất cân bằng dữ liệu, hiệu quả phân lớp của giải thuật CSWRF thuộc cách tiếp cận điều chỉnh hàm chi phí (cost-sensitive learning) tốt hơn phương pháp SMOTE kết hợp giải thuật Rừng Ngẫu Nhiên.
- Đánh giá nguy cơ ngã của người bệnh viêm khớp dạng thấp bằng thang điểm morse tại Bệnh viện Đại học Y Hà Nội
- Thực trạng lo âu và một số yếu tố liên quan ở người bệnh đến tiêm và hút dịch khớp tại Bệnh viện Đại học Y Hà Nội
- Đặc điểm hình thái tuyến giáp trên siêu âm ở phụ nữ sau mãn kinh
- Bước đầu đánh giá kết quả điều trị tắc động mạch phổi cấp ở bệnh nhân cao tuổi
- Thực trạng và kết quả điều trị thiếu máu ở người bệnh phẫu thuật chỉnh hình lớn tại Bệnh viện Đại học Y Hà Nội giai đoạn 2023-2024