Phân lớp dữ liệu mất cân bằng trong bài báo dự đoán thuê bao rời bỏ nhà mạng dựa vào giải thuật Rừng Ngẫu Nhiên cải tiến
Tác giả: Dương Tuấn Anh, Đinh Minh HòaTóm tắt:
Trong lãnh vực viễn thông, việc thuê bao rời bỏ nhà mạng là sự cố rất đáng quan tâm vì vấn đề này có thể ảnh hưởng đến lợi nhuận của công ty. Tuy nhiên, đặc điểm dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng gây khó khăn cho việc phát triển một mô hình phân lớp hiệu quả để giải quyết bài toán này. Trong nghiên cứu này thử áp dụng giải thuật rừng ngẫu nhiên có điều chỉnh hàm chi phí (cost-sensitive weighted random forest - CSWRF), vốn đã thành công trong bài toán phát hiện gian lận thẻ tín dụng (credit card fraud detection), để giải quyết vấn đề dữ liệu mất cân bằng trong bài toán dự đoán thuê bao rời bỏ nhà mạng. Ngoài ra, chúng tôi so sánh hiệu quả của giải thuật CSWRF với cách tiếp cận lấy mẫu dữ liệu: kết hợp giải thuật Rừng Ngẫu Nhiên với kỹ thuật lấy mẫu tăng SMOTE. Kết quả thực nghiệm trên hai bộ dữ liệu mẫu cho thấy đối với bài toán dự đoán thuê bao rời bỏ nhà mạng, vốn là bài toán mất cân bằng dữ liệu, hiệu quả phân lớp của giải thuật CSWRF thuộc cách tiếp cận điều chỉnh hàm chi phí (cost-sensitive learning) tốt hơn phương pháp SMOTE kết hợp giải thuật Rừng Ngẫu Nhiên.
- Đánh giá kết quả phẫu thuật Phaco điều trị bệnh đục thể thủy tinh trên mắt có hội chứng giả bong bao tại Bệnh viện 19-8
- Kết quả điều trị đau do zona bằng phương pháp giảm đau do người bệnh tự kiểm soát
- Tình trạng suy dinh dưỡng và các yếu tố liên quan ở người bệnh ung thư đường tiêu hóa đang hóa trị tại Bệnh viện Đại học Y Dược Thành phố Hồ Chí Minh
- Đánh giá kết quả của cấy chỉ kết hợp xoa bóp bấm huyệt, điện châm và thủy châm điều trị bệnh nhân thoái hóa khớp gối
- Đánh giá tác dụng của phương pháp laser châm kết hợp xoa bóp bấm huyệt điều trị đau vùng cổ gáy do thoái hóa cột sống cổ