Thuật toán khai thác tập hữu ích cao dựa trên di truyền với đột biến xếp hạng
Tác giả: Phạm Đức Thành, Lê Thị Minh NguyệnTóm tắt:
Khai thác độ hữu ích là nghiên cứu khai thác tập mục có lợi từ cơ sở dữ liệu giao dịch. Đây là phương pháp khai thác tập phổ biến dựa trên độ hữu ích để tìm tập mục phù hợp với sở thích của người dùng. Những nghiên cứu gần đây về khai thác các tập mục hữu ích cao (HUIs) từ cơ sở dữ liệu (CSDL) phải đối mặt với hai thách thức lớn, đó là không gian tìm kiếm theo cấp số nhân và ngưỡng hữu ích tối thiểu phụ thuộc vào CSDL. Không gian tìm kiếm vô cùng lớn khi số lượng các mục riêng biệt và kích thước của CSDL lớn. Các nhà phân tích phải chỉ định các ngưỡng hữu ích tối thiểu để phù hợp với những công việc khai thác của họ, mặc dù có thể họ không có kiến thức liên quan đến CSDL mà họ đang làm. Hơn nữa, thuật toán khai thác độ hữu ích chỉ hỗ trợ tập mục mang giá trị dương. Để tránh những vấn đề này, bài viết rình bày hai cách tiếp cận để khai thác HUI có chứa mục giá trị âm từ CSDL giao dịch: có hoặc không có chỉ định ngưỡng hữu ích tối thiểu thông qua thuật giải di truyền với đột biến được xếp hạng. Theo sự tìm hiểu của chúng tôi, đây là nghiên cứu đầu tiên trong khai thác HUI với các giá trị mang mục âm từ CSDL giao dịch sử dụng thuật giải di truyền. Kết quả thử nghiệm cho thấy các phương pháp tiếp cận được mô tả trong bài viết này đạt được hiệu suất tốt hơn về khả năng mở rộng và tính hiệu quả.
- Constrained optimization using swarm intelligence integrated with Deb’s feasibility rules developed in Python = Giải bài toán tối ưu hóa ràng buộc sử dụng trí tuệ bầy đàn kết hợp quy tắc khả thi của Deb được phát triển bằng Python
- Particle Swarm Optimization using ε constraint-handling method developed in Python = Thuật toán tối ưu hóa bầy đàn sử dụng phương pháp xử lý ràng buộc ε được phát triển với Python
- Solving constrained optimization tasks in civil engineering using ε- Differential Evolution developed with Visual C#. NET = Giải các bài toán tối ưu hóa có ràng buộc trong ngành xây dựng sử dụng thuật toán ε - tiến hóa vi phân được phát triển với ngôn ngữ
- Optimizing cantilever retaining wall design using feasibility rule-based evolutionary algorithm developed with Visual C# .NET = Tối ưu hóa thiết kế tường chắn đất sử dụng thuật toán tiến hóa được kết hợp quy tắc khả thi và phát triển với ngôn ngữ C# .NET
- IFC5 : kỳ vọng về cuộc cách mạng trao đổi thông tin trong xây dựng kỹ thuật số





