Ứng dụng phương pháp học máy trong dự báo rủi ro phá sản của các doanh nghiệp Việt Nam
Tác giả: Trương Thị Thùy Dương, Lê Hải Trung
Số trang:
Tr. 44-53
Tên tạp chí:
Kinh tế & phát triển
Số phát hành:
Số 310
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
209 Phan Thanh
Mã phân loại:
658
Ngôn ngữ:
Tiếng Việt
Từ khóa:
Phá sản, Logistic, Random Forest, Extreme Gradient Boosting, K-Nearest Neighboor, Naïve Bayses
Tóm tắt:
Dự báo rủi ro phá sản của doanh nghiệp đóng vai trò quan trọng trong việc đưa ra các cảnh báo sớm cho các doanh nghiệp. Các nghiên cứu đánh giá rủi ro phá sản sử dụng các phương pháp thống kê truyền thống và mô hình học máy. Trong nghiên cứu này sử dụng hồi quy logistic và các mô hình học máy để dự báo rủi ro phá sản của các doanh nghiệp Việt Nam. Nghiên cứu đi kiểm chứng tính hiệu quả của các mô hình học máy so với thống kê truyền thống và kiểm tra tính hiệu quả của các mô hình học máy. Kết quả cho thấy sự ưu thế của mô hình XGBoost và Random Forest so với logistic và các phương pháp khác.
Tạp chí liên quan
- Mối quan hệ giữa phát triển tài chính và rủi ro tín dụng tại các ngân hàng thương mại tại Việt Nam
- Tác động của tỷ lệ sở hữu nước ngoài tới hiệu quả hoạt động của các ngân hàng thương mại : bằng chứng thực nghiệm tại Việt Nam
- Kinh nghiệm phát triển kết cấu hạ tầng giao thông của Singapore và hàm ý cho Việt Nam
- Nghiên cứu tác động của các yếu tố mua sắm bền vững đến hiệu quả kinh doanh tại doanh nghiệp ngành đồ ăn nhanh Việt Nam
- Ảnh hưởng của lao động trình độ cao đến xuất khẩu của các doanh nghiệp sản xuất tại Việt Nam