Two-phase combined model to improve the accuracy of indoor location fingerprinting
Tác giả: Van Hieu Vu, Binh Ngo Van, Tung Hoang Do ThanhTóm tắt:
In this paper, present a different approach applying a machine learning model that combines many algorithms in two phases, and propose a feature reduction method. Specifically, our research is focused on the combination of different regression and classification algorithms including K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Extra Tree Regressor (extraTree), Light Gradient Boosting Machine (LGBM), Logistic Regression (LR) and Linear Regression (LiR) to create a new data set and models that can be used in the training phase. These proposed models are tested on the UJIIndoorLoc 1 dataset. Our experimental results show a prediction accuracy of 98.73% by floor, and an estimated accuracy of 99.62% and 99.52% respectively by longitude and latitude. When compared with the results of the models in which we use independent algorithms, and of other researches that have different models using the same algorithms and on the same dataset, most of our results are better.
- Bảo đảm quyền tham gia của trẻ em theo pháp luật quốc tế và pháp luật Việt Nam
- Tòa án Thương mại Quốc tế - bước chuyển mới trong giải quyết tranh chấp thương mại quốc tế
- Thu thập chứng cứ bằng biện pháp lấy lời khai của người bị kiện trong tố tụng hành chính
- Kinh nghiệm quốc tế về quản lý tín chỉ carbon và trao đổi hạn ngạch phát thải khí nhà kính
- Pháp luật Việt Nam về an ninh con người của phạm nhân trong bối cảnh hội nhập quốc tế và một số khuyến nghị hoàn thiện