Two-phase combined model to improve the accuracy of indoor location fingerprinting
Tác giả: Van Hieu Vu, Binh Ngo Van, Tung Hoang Do ThanhTóm tắt:
In this paper, present a different approach applying a machine learning model that combines many algorithms in two phases, and propose a feature reduction method. Specifically, our research is focused on the combination of different regression and classification algorithms including K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF), Extra Tree Regressor (extraTree), Light Gradient Boosting Machine (LGBM), Logistic Regression (LR) and Linear Regression (LiR) to create a new data set and models that can be used in the training phase. These proposed models are tested on the UJIIndoorLoc 1 dataset. Our experimental results show a prediction accuracy of 98.73% by floor, and an estimated accuracy of 99.62% and 99.52% respectively by longitude and latitude. When compared with the results of the models in which we use independent algorithms, and of other researches that have different models using the same algorithms and on the same dataset, most of our results are better.
- Hiệu lực của Quyền Hiến định trong lĩnh vực luật tư: Xu thế nghiên cứu trên thế giới và triển vọng ở Việt Nam
- Hoàn thiện pháp luật xử phạt vi phạm hành chính đối với hành vi buôn bán hàng hóa giả mạo nhãn hiệu
- Cảm thức sinh thái trong thơ chữ Hán Việt Nam và Hàn Quốc
- Mờ hóa nhân vật trong Mù lòa của José Saramago và Thành phố bị kết án biến mất của Trần Trọng Vũ từ góc nhìn văn học so sánh
- Bài thơ Tiếng Việt của Lưu Quang Vũ nhìn từ góc độ cấu trúc văn bản