Evolutionary algorithm for task offloading in vehicular fog computing
Tác giả: Do Bao Son, Vu Tri An, Hiep Khac Vo, Pham Vu Minh, Nguyen Quang Phuc, Nguyen Phi Le, Binh Minh Nguyen, Huynh Thi Thanh BinhTóm tắt:
Internet of Things technology was introduced to allow many physical devices to connectover the Internet. The data and tasks generated by these devices put pressure on the traditionalcloud due to high resource and latency demand. Vehicular Fog Computing (VFC) is a concept thatutilizes the computational resources integrated into the vehicles to support the processing of end-user-generated tasks. This research first proposes a bag of tasks offloading framework that allowsvehicles to handle multiple tasks and any given time step. We then implement an evolution-basedalgorithm called Time-Cost-aware Task-Node Mapping (TCaTNM) to optimize completion time andoperating costs simultaneously. The proposed algorithm is evaluated on datasets of different tasksand computing node sizes. The results show that our scheduling algorithm can save more than60%ofmonetary cost than the Particle Swarm Optimization (PSO) algorithm with competitive computationtime. Further evaluations also show that our algorithm has a much faster learning rate and can scaleits performance as the number of tasks and computing nodes increases.
- Một phương pháp dựa trên mạng nơ-ron tích chập một chiều kết hợp tăng cường dữ liệu để khôi phục dữ liệu bị thiếu trong hệ thống giám sát sức khỏe kết cấu cầu
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng
- Xây dựng hệ thống giám sát và điều khiển tự động cho trang trại bò sữa sử dụng công nghệ Internet vạn vật
- Kỹ năng số cho người lao động trong bối cảnh chuyển đổi số
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng