Evolutionary algorithm for task offloading in vehicular fog computing
Tác giả: Do Bao Son, Vu Tri An, Hiep Khac Vo, Pham Vu Minh, Nguyen Quang Phuc, Nguyen Phi Le, Binh Minh Nguyen, Huynh Thi Thanh BinhTóm tắt:
Internet of Things technology was introduced to allow many physical devices to connectover the Internet. The data and tasks generated by these devices put pressure on the traditionalcloud due to high resource and latency demand. Vehicular Fog Computing (VFC) is a concept thatutilizes the computational resources integrated into the vehicles to support the processing of end-user-generated tasks. This research first proposes a bag of tasks offloading framework that allowsvehicles to handle multiple tasks and any given time step. We then implement an evolution-basedalgorithm called Time-Cost-aware Task-Node Mapping (TCaTNM) to optimize completion time andoperating costs simultaneously. The proposed algorithm is evaluated on datasets of different tasksand computing node sizes. The results show that our scheduling algorithm can save more than60%ofmonetary cost than the Particle Swarm Optimization (PSO) algorithm with competitive computationtime. Further evaluations also show that our algorithm has a much faster learning rate and can scaleits performance as the number of tasks and computing nodes increases.
- Đánh giá kết quả phẫu thuật Phaco điều trị bệnh đục thể thủy tinh trên mắt có hội chứng giả bong bao tại Bệnh viện 19-8
- Kết quả điều trị đau do zona bằng phương pháp giảm đau do người bệnh tự kiểm soát
- Tình trạng suy dinh dưỡng và các yếu tố liên quan ở người bệnh ung thư đường tiêu hóa đang hóa trị tại Bệnh viện Đại học Y Dược Thành phố Hồ Chí Minh
- Đánh giá kết quả của cấy chỉ kết hợp xoa bóp bấm huyệt, điện châm và thủy châm điều trị bệnh nhân thoái hóa khớp gối
- Đánh giá tác dụng của phương pháp laser châm kết hợp xoa bóp bấm huyệt điều trị đau vùng cổ gáy do thoái hóa cột sống cổ