Evolutionary algorithm for task offloading in vehicular fog computing
Tác giả: Do Bao Son, Vu Tri An, Hiep Khac Vo, Pham Vu Minh, Nguyen Quang Phuc, Nguyen Phi Le, Binh Minh Nguyen, Huynh Thi Thanh BinhTóm tắt:
Internet of Things technology was introduced to allow many physical devices to connectover the Internet. The data and tasks generated by these devices put pressure on the traditionalcloud due to high resource and latency demand. Vehicular Fog Computing (VFC) is a concept thatutilizes the computational resources integrated into the vehicles to support the processing of end-user-generated tasks. This research first proposes a bag of tasks offloading framework that allowsvehicles to handle multiple tasks and any given time step. We then implement an evolution-basedalgorithm called Time-Cost-aware Task-Node Mapping (TCaTNM) to optimize completion time andoperating costs simultaneously. The proposed algorithm is evaluated on datasets of different tasksand computing node sizes. The results show that our scheduling algorithm can save more than60%ofmonetary cost than the Particle Swarm Optimization (PSO) algorithm with competitive computationtime. Further evaluations also show that our algorithm has a much faster learning rate and can scaleits performance as the number of tasks and computing nodes increases.
- Đánh giá nguy cơ ngã của người bệnh viêm khớp dạng thấp bằng thang điểm morse tại Bệnh viện Đại học Y Hà Nội
- Thực trạng lo âu và một số yếu tố liên quan ở người bệnh đến tiêm và hút dịch khớp tại Bệnh viện Đại học Y Hà Nội
- Đặc điểm hình thái tuyến giáp trên siêu âm ở phụ nữ sau mãn kinh
- Bước đầu đánh giá kết quả điều trị tắc động mạch phổi cấp ở bệnh nhân cao tuổi
- Thực trạng và kết quả điều trị thiếu máu ở người bệnh phẫu thuật chỉnh hình lớn tại Bệnh viện Đại học Y Hà Nội giai đoạn 2023-2024