Evolutionary algorithm for task offloading in vehicular fog computing
Tác giả: Do Bao Son, Vu Tri An, Hiep Khac Vo, Pham Vu Minh, Nguyen Quang Phuc, Nguyen Phi Le, Binh Minh Nguyen, Huynh Thi Thanh BinhTóm tắt:
Internet of Things technology was introduced to allow many physical devices to connectover the Internet. The data and tasks generated by these devices put pressure on the traditionalcloud due to high resource and latency demand. Vehicular Fog Computing (VFC) is a concept thatutilizes the computational resources integrated into the vehicles to support the processing of end-user-generated tasks. This research first proposes a bag of tasks offloading framework that allowsvehicles to handle multiple tasks and any given time step. We then implement an evolution-basedalgorithm called Time-Cost-aware Task-Node Mapping (TCaTNM) to optimize completion time andoperating costs simultaneously. The proposed algorithm is evaluated on datasets of different tasksand computing node sizes. The results show that our scheduling algorithm can save more than60%ofmonetary cost than the Particle Swarm Optimization (PSO) algorithm with competitive computationtime. Further evaluations also show that our algorithm has a much faster learning rate and can scaleits performance as the number of tasks and computing nodes increases.
- Đánh giá hiệu quả kỹ thuật CNV-seq trong chẩn đoán trước sinh các bất thường nhiễm sắc thể ở thai nhi tại Bệnh viện Đại học Y Hà Nội
- Đánh giá kết quả hồi phục chức năng vận động cho người bệnh đột quỵ não tại Bệnh viện Điều dưỡng Phục hồi chức năng Trung ương năm 2023
- Đánh giá giá trị xét nghiệm HPV, tế bào học và đồng sàng lọc trong tầm soát ung thư cổ tử cung
- Đặc điểm lâm sàng, cận lâm sàng của người bệnh viêm gan vi rút E điều trị tại Bệnh viện Bệnh nhiệt đới Trung ương trong năm 2023
- Giá trị của xét nghiệm Xpert MTB/RIF chẩn đoán lao phổi trong mẫu dịch rửa phế quản phế nang tại bệnh viện Đa khoa Đồng Nai





