Empirical study of feature extraction approaches for image captioning in Vietnamese
Tác giả: Khang Nguyen
Số trang:
P. 327-346
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
V.38-N.4
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Grid features, region features, image captioning, Viecap4h, uit-viic, faster R-CNN, cascade R-CNN, grid R-CNN, Vinvl
Chủ đề:
Computer science
Tóm tắt:
This study focus on the image captioning problem in Vietnamese. Indetail, an empirical study of grid-based and region-based feature extraction approaches using currentstate-of-the-art object detection methods is investigated to explore the suitable way to represent theimages in the model space. Each feature type represents images, and the image captioning task istrained using the Transformer-based model. The effectiveness of different feature types is exploredon two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. Theexperimental results show crucial insight into the feature extraction task for image captioning inVietnamese.
Tạp chí liên quan
- Ứng dụng công nghệ chuỗi khối trong nghiệp vụ ngân hàng tại Việt Nam: Thực trạng và khuyến nghị
- Mô hình học sâu phát hiện và nhận diện mã container áp dụng trong vận hành cảng thông minh
- Phát hiện lỗ hổng mã nguồn theo hướng tiếp cận học sâu
- Nghiên cứu, thiết kế và kiểm tra thuật toán mã hóa GIFT-128-bit
- Xây dựng chương trình tính toán động lực học động cơ đốt trong bốn kỳ