Empirical study of feature extraction approaches for image captioning in Vietnamese
Tác giả: Khang Nguyen
Số trang:
P. 327-346
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
V.38-N.4
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Grid features, region features, image captioning, Viecap4h, uit-viic, faster R-CNN, cascade R-CNN, grid R-CNN, Vinvl
Chủ đề:
Computer science
Tóm tắt:
This study focus on the image captioning problem in Vietnamese. Indetail, an empirical study of grid-based and region-based feature extraction approaches using currentstate-of-the-art object detection methods is investigated to explore the suitable way to represent theimages in the model space. Each feature type represents images, and the image captioning task istrained using the Transformer-based model. The effectiveness of different feature types is exploredon two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. Theexperimental results show crucial insight into the feature extraction task for image captioning inVietnamese.
Tạp chí liên quan
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Khai thác dữ liệu trong bảo trì thiết bị
- Áp dụng mạng Bayes xây dựng mô hình dự đoán xác suất có điều kiện phức hợp = Applying Bayesian network to build predicting model for complex conditional probabilities
- Tăng tốc dựa vào GPU giải thuật phân lớp chuỗi thời gian gồm tổ hợp bộ phân lớp 1-NN kết hợp với những đô đo khoảng cách không đàn hồi và đàn hồi