Empirical study of feature extraction approaches for image captioning in Vietnamese
Tác giả: Khang Nguyen
Số trang:
P. 327-346
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
V.38-N.4
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Grid features, region features, image captioning, Viecap4h, uit-viic, faster R-CNN, cascade R-CNN, grid R-CNN, Vinvl
Chủ đề:
Computer science
Tóm tắt:
This study focus on the image captioning problem in Vietnamese. Indetail, an empirical study of grid-based and region-based feature extraction approaches using currentstate-of-the-art object detection methods is investigated to explore the suitable way to represent theimages in the model space. Each feature type represents images, and the image captioning task istrained using the Transformer-based model. The effectiveness of different feature types is exploredon two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. Theexperimental results show crucial insight into the feature extraction task for image captioning inVietnamese.
Tạp chí liên quan
- Đánh giá tác động của đào tạo nâng cao năng lực đến sự tự tin trong chăm sóc sức khoẻ tâm thần cho người bệnh ung thư của điều dưỡng viên
- Thực trạng phát triển kinh tế tư nhân ở Việt Nam : thành tựu, thách thức và triển vọng
- Những động lực giúp Việt Nam tăng trưởng 8% trong năm 2025 : thực trạng và giải pháp
- Đẩy mạnh giải ngân vốn đầu tư công đối với các dự án trong ngành đường sắt ở Việt Nam
- Nghiên cứu mối quan hệ giữa phân cấp tài khóa và chất lượng dịch vụ công tại Việt Nam