Empirical study of feature extraction approaches for image captioning in Vietnamese
Tác giả: Khang Nguyen
Số trang:
P. 327-346
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
V.38-N.4
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Grid features, region features, image captioning, Viecap4h, uit-viic, faster R-CNN, cascade R-CNN, grid R-CNN, Vinvl
Chủ đề:
Computer science
Tóm tắt:
This study focus on the image captioning problem in Vietnamese. Indetail, an empirical study of grid-based and region-based feature extraction approaches using currentstate-of-the-art object detection methods is investigated to explore the suitable way to represent theimages in the model space. Each feature type represents images, and the image captioning task istrained using the Transformer-based model. The effectiveness of different feature types is exploredon two Vietnamese datasets: UIT-ViIC and VieCap4H, the two standard benchmark datasets. Theexperimental results show crucial insight into the feature extraction task for image captioning inVietnamese.
Tạp chí liên quan
- Hiệu lực của Quyền Hiến định trong lĩnh vực luật tư: Xu thế nghiên cứu trên thế giới và triển vọng ở Việt Nam
- Hoàn thiện pháp luật xử phạt vi phạm hành chính đối với hành vi buôn bán hàng hóa giả mạo nhãn hiệu
- Cảm thức sinh thái trong thơ chữ Hán Việt Nam và Hàn Quốc
- Mờ hóa nhân vật trong Mù lòa của José Saramago và Thành phố bị kết án biến mất của Trần Trọng Vũ từ góc nhìn văn học so sánh
- Bài thơ Tiếng Việt của Lưu Quang Vũ nhìn từ góc độ cấu trúc văn bản