An effective algorithm for computing reducts in decision tables
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we propose a reduct computing algorithm using attribute clustering. The proposed algorithm works in three main stages. In the first stage, irrelevant attributes are eliminated. In the second stage relevant attributes are divided into appropriately selected number of clusters by Partitioning Around Medoids (PAM) clustering method integrated with a special metric in attribute space which is the normalized variation of information. In the third stage, the representative attribute from each cluster is selected that is the most class-related. The selected attributes form the approximate reduct. The proposed algorithm is implemented and experimented. The experimental results show that the proposed algorithm is capable of computing approximate reduct with small size and high classification accuracy, when the number of clusters used to group the attributes is appropriately selected.
- Kỹ năng số cho người lao động trong bối cảnh chuyển đổi số
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng
- Biện pháp quản lý hoạt động dạy học trực tuyến để đem lại cơ hội bình đẳng cho người học
- Phát triển năng lực ứng dụng ICT cho sinh viên trong hoạt động viết bài nghiên cứu khoa học tại Trường Đại học Kỹ thuật - Công nghệ Cần Thơ
- Luật số lớn đối với tổng có trọng số các biến ngẫu nhiên mờ