An effective algorithm for computing reducts in decision tables
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we propose a reduct computing algorithm using attribute clustering. The proposed algorithm works in three main stages. In the first stage, irrelevant attributes are eliminated. In the second stage relevant attributes are divided into appropriately selected number of clusters by Partitioning Around Medoids (PAM) clustering method integrated with a special metric in attribute space which is the normalized variation of information. In the third stage, the representative attribute from each cluster is selected that is the most class-related. The selected attributes form the approximate reduct. The proposed algorithm is implemented and experimented. The experimental results show that the proposed algorithm is capable of computing approximate reduct with small size and high classification accuracy, when the number of clusters used to group the attributes is appropriately selected.
- Ứng dụng công nghệ chuỗi khối trong nghiệp vụ ngân hàng tại Việt Nam: Thực trạng và khuyến nghị
- Mô hình học sâu phát hiện và nhận diện mã container áp dụng trong vận hành cảng thông minh
- Phát hiện lỗ hổng mã nguồn theo hướng tiếp cận học sâu
- Nghiên cứu, thiết kế và kiểm tra thuật toán mã hóa GIFT-128-bit
- Xây dựng chương trình tính toán động lực học động cơ đốt trong bốn kỳ