An effective algorithm for computing reducts in decision tables
Tác giả: Do Si Truong, Lam Thanh Hien, Nguyen Thanh TungTóm tắt:
In this paper, we propose a reduct computing algorithm using attribute clustering. The proposed algorithm works in three main stages. In the first stage, irrelevant attributes are eliminated. In the second stage relevant attributes are divided into appropriately selected number of clusters by Partitioning Around Medoids (PAM) clustering method integrated with a special metric in attribute space which is the normalized variation of information. In the third stage, the representative attribute from each cluster is selected that is the most class-related. The selected attributes form the approximate reduct. The proposed algorithm is implemented and experimented. The experimental results show that the proposed algorithm is capable of computing approximate reduct with small size and high classification accuracy, when the number of clusters used to group the attributes is appropriately selected.
- Đánh giá nguy cơ ngã của người bệnh viêm khớp dạng thấp bằng thang điểm morse tại Bệnh viện Đại học Y Hà Nội
- Thực trạng lo âu và một số yếu tố liên quan ở người bệnh đến tiêm và hút dịch khớp tại Bệnh viện Đại học Y Hà Nội
- Đặc điểm hình thái tuyến giáp trên siêu âm ở phụ nữ sau mãn kinh
- Bước đầu đánh giá kết quả điều trị tắc động mạch phổi cấp ở bệnh nhân cao tuổi
- Thực trạng và kết quả điều trị thiếu máu ở người bệnh phẫu thuật chỉnh hình lớn tại Bệnh viện Đại học Y Hà Nội giai đoạn 2023-2024