Joint power cost and latency minimization for secure collaborative learning system
Tác giả: Nguyen Thi Thanh Van, Vu Van Quang, Nguyen Cong LuongTóm tắt:
This work investigates the model update security in a collaborative learning or federated learning network by using the covert communication. The CC uses the jamming signal and multiple friendly jammers (FJs) are deployed that can offer jamming services to the model owner, i.e., a base station (BS). To enable the BS to select the best FJ, i.e., the lowest cost FJ, a truthful auction is adopted. Then, a problem is formulated to optimize the jamming power, transmission power, and local accuracy. The objective is to minimize the training latency, subject to the security performance requirement and budget of the BS. To solve the non-convex problem, we adopt a Successive Convex Approximation algorithm. The simulation results reveals some interesting things. For example, the trustful auction reduces the jamming cost of the BS as the number of FJs increases.
- Constrained optimization using swarm intelligence integrated with Deb’s feasibility rules developed in Python = Giải bài toán tối ưu hóa ràng buộc sử dụng trí tuệ bầy đàn kết hợp quy tắc khả thi của Deb được phát triển bằng Python
- Particle Swarm Optimization using ε constraint-handling method developed in Python = Thuật toán tối ưu hóa bầy đàn sử dụng phương pháp xử lý ràng buộc ε được phát triển với Python
- Solving constrained optimization tasks in civil engineering using ε- Differential Evolution developed with Visual C#. NET = Giải các bài toán tối ưu hóa có ràng buộc trong ngành xây dựng sử dụng thuật toán ε - tiến hóa vi phân được phát triển với ngôn ngữ
- Optimizing cantilever retaining wall design using feasibility rule-based evolutionary algorithm developed with Visual C# .NET = Tối ưu hóa thiết kế tường chắn đất sử dụng thuật toán tiến hóa được kết hợp quy tắc khả thi và phát triển với ngôn ngữ C# .NET
- IFC5 : kỳ vọng về cuộc cách mạng trao đổi thông tin trong xây dựng kỹ thuật số





