A data-centric deep learning method for pulmonary nodule detection
Tác giả: Chi Cuong Nguyen, Long Giang Nguyen, Giang Son Tran
Số trang:
P. 229-243
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
Vol 38(3)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Data-centric learning, deep learning, pulmonary nodule detection
Chủ đề:
Computer science
Tóm tắt:
In this paper, we follow the direction of data-centric approach for lung nodule detection by proposing a data-centric method to improve detection performance of lung nodules on CT scans. Our method takes into account the dataset-specific features (nodule sizes and aspect ratios) to train detection models as well as add more training data from local Vietnamese hospital. We experiment our method on the three widely used object detection networks (Faster R-CNN, YOLOv3 and RetinaNet). The experimental results show that our proposed method improves detection sensitivity of these object detection models up to 4.24%.
Tạp chí liên quan
- Một phương pháp dựa trên mạng nơ-ron tích chập một chiều kết hợp tăng cường dữ liệu để khôi phục dữ liệu bị thiếu trong hệ thống giám sát sức khỏe kết cấu cầu
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng
- Xây dựng hệ thống giám sát và điều khiển tự động cho trang trại bò sữa sử dụng công nghệ Internet vạn vật
- Kỹ năng số cho người lao động trong bối cảnh chuyển đổi số
- Nguy cơ tội phạm sử dụng công nghệ deepfake trong giao dịch ngân hàng