A data-centric deep learning method for pulmonary nodule detection
Tác giả: Chi Cuong Nguyen, Long Giang Nguyen, Giang Son Tran
Số trang:
P. 229-243
Tên tạp chí:
Tin học & Điều khiển học
Số phát hành:
Vol 38(3)
Kiểu tài liệu:
Tạp chí trong nước
Nơi lưu trữ:
03 Quang Trung
Mã phân loại:
005
Ngôn ngữ:
Tiếng Anh
Từ khóa:
Data-centric learning, deep learning, pulmonary nodule detection
Chủ đề:
Computer science
Tóm tắt:
In this paper, we follow the direction of data-centric approach for lung nodule detection by proposing a data-centric method to improve detection performance of lung nodules on CT scans. Our method takes into account the dataset-specific features (nodule sizes and aspect ratios) to train detection models as well as add more training data from local Vietnamese hospital. We experiment our method on the three widely used object detection networks (Faster R-CNN, YOLOv3 and RetinaNet). The experimental results show that our proposed method improves detection sensitivity of these object detection models up to 4.24%.
Tạp chí liên quan
- Nghiên cứu ứng dụng hỗn hợp xỉ than, tro bay có gia cố xi măng làm lớp đáy móng trong kết cấu nền - mặt đường ô tô bằng phương pháp thí nghiệm
- Thiết kế chiếu sáng trong công trình kết cấu gỗ truyền thống : tôn vinh vẻ đẹp văn hóa và di sản
- Vẽ phác thảo - hình ảnh phản chiếu tư duy - quan điểm nhà thiết kế
- Đặc điểm kiến trúc hội quán của người Hoa tại khu phố cổ Hà Nội
- Nghiên cứu phát triển vật liệu không nung không cần xi măng - gạch lát vỉa hè từ vật liệu geopolymer