CSDL Bài trích Báo - Tạp chí

Trở về

Influence of rice husk ash on mortar compressive strength at different temperatures: Machine learning based modelling

Tác giả: Tran Thu Hien, Hoang Nhat Duc
Số trang: P. 27-36
Tên tạp chí: Khoa học & Công nghệ Đại học Duy Tân
Số phát hành: Số 5(54)
Kiểu tài liệu: Tạp chí trong nước
Nơi lưu trữ: 03 Quang Trung
Mã phân loại: 624
Ngôn ngữ: Tiếng Anh
Từ khóa: Compressive strength, elevated temperature, rice husk ash, mortar, machine learning
Chủ đề: Civil engineering
Tóm tắt:

The impact of different rice husk ash contents (5, 10, 20%) on mortar strength is examined at different elevated temperatures (150, 300, 450, 750oC). Based on a 45 experimental result data set, three machine learning algorithms including the Artificial Neural Network (ANN), the Least Squares Support Vector Regression (LS-SVR) and the Multivariate Adaptive Regression Splines (MARS) have been used to model the functional relationship between the mixture components and the compressive strength. As a result, it is shown that LS-SVR consists in the most capable approach for modeling mortar strength with a good value of coefficient of determination (R2) = 0.80. Accordingly, this machine learning approach is potential to be used in RHA contained mix design by construction engineers.

Tạp chí liên quan