Influence of rice husk ash on mortar compressive strength at different temperatures: Machine learning based modelling
Tác giả: Tran Thu Hien, Hoang Nhat DucTóm tắt:
The impact of different rice husk ash contents (5, 10, 20%) on mortar strength is examined at different elevated temperatures (150, 300, 450, 750oC). Based on a 45 experimental result data set, three machine learning algorithms including the Artificial Neural Network (ANN), the Least Squares Support Vector Regression (LS-SVR) and the Multivariate Adaptive Regression Splines (MARS) have been used to model the functional relationship between the mixture components and the compressive strength. As a result, it is shown that LS-SVR consists in the most capable approach for modeling mortar strength with a good value of coefficient of determination (R2) = 0.80. Accordingly, this machine learning approach is potential to be used in RHA contained mix design by construction engineers.
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Experimental study on influence of rice husk ash on mortar compressive strength at different temperatures = Nghiên cứu thực nghiệm ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau
- Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel fibre reinforced concrete slabs = Sử dụng mạng nơ-ron thần kinh nhân tạo với phương pháp huấn luyện ước tính mô men tự thích n
- Influence of rice husk ash on mortar compressive strength at different temperatures : machine learning based modelling = Ảnh hưởng của tro trấu tới cường độ của vữa ở các nhiệt độ khác nhau : mô hình hóa bằng máy học
- Image processing-based automatic gradation of stone aggregates = Tự động hóa việc xác định cấp phối hạt của cốt liệu đá sử dụng kỹ thuật xử lý ảnh





