Influence of rice husk ash on mortar compressive strength at different temperatures: Machine learning based modelling
Tác giả: Tran Thu Hien, Hoang Nhat DucTóm tắt:
The impact of different rice husk ash contents (5, 10, 20%) on mortar strength is examined at different elevated temperatures (150, 300, 450, 750oC). Based on a 45 experimental result data set, three machine learning algorithms including the Artificial Neural Network (ANN), the Least Squares Support Vector Regression (LS-SVR) and the Multivariate Adaptive Regression Splines (MARS) have been used to model the functional relationship between the mixture components and the compressive strength. As a result, it is shown that LS-SVR consists in the most capable approach for modeling mortar strength with a good value of coefficient of determination (R2) = 0.80. Accordingly, this machine learning approach is potential to be used in RHA contained mix design by construction engineers.
- Chuyển đổi số, khả năng vượt các rào cản xuất khẩu và tác động đến kết quả xuất khẩu của doanh nghiệp
- Nghiên cứu các yếu tố ảnh hưởng đến ý định áp dụng kinh tế tuần hoàn trong nông nghiệp tại Hà Nội
- Thương hiệu nhà tuyển dụng và hoạt động thu hút nhân sự tài năng: Góc nhìn từ thực tiễn doanh nghiệp tư nhân tại Việt Nam
- Các yếu tố ảnh hưởng đến tỷ lệ thu nhập phi lãi trên tổng tài sản của các ngân hàng thương mại cổ phần niêm yết, đăng ký giao dịch trên thị trường chứng khoán Việt Nam
- Nghiên cứu về ảnh hưởng của giá trị cá nhân và giá trị văn hoá đến ý định mua sản phẩm thời trang second-hand của thế hệ Z tại thành phố Hà Nội: Vai trò điều tiết của bản sắc tiết kiệm