Influence of rice husk ash on mortar compressive strength at different temperatures: Machine learning based modelling
Tác giả: Tran Thu Hien, Hoang Nhat DucTóm tắt:
The impact of different rice husk ash contents (5, 10, 20%) on mortar strength is examined at different elevated temperatures (150, 300, 450, 750oC). Based on a 45 experimental result data set, three machine learning algorithms including the Artificial Neural Network (ANN), the Least Squares Support Vector Regression (LS-SVR) and the Multivariate Adaptive Regression Splines (MARS) have been used to model the functional relationship between the mixture components and the compressive strength. As a result, it is shown that LS-SVR consists in the most capable approach for modeling mortar strength with a good value of coefficient of determination (R2) = 0.80. Accordingly, this machine learning approach is potential to be used in RHA contained mix design by construction engineers.
- Tăng cường sự tham gia của khu vực tư nhân thông qua hợp tác công - tư trong xử lý chất thải rắn sinh hoạt
- Các cơ chế tài chính thúc đẩy bảo tồn đa dạng sinh học và dịch vụ hệ sinh thái
- Đánh giá vai trò của nhận thức cộng đồng trong duy trì bền vững đô thị và phát triển dịch vụ hệ sinh thái tại công viên Tao Đàn
- Phát hành trái phiếu xanh tại Việt Nam : thực trạng và khuyến nghị
- Đề xuất các giải pháp ứng phó với đảo nhiệt đô thị để bảo vệ sức khỏe người dân và thích ứng với biến đổi khí hậu