Phân loại tế bào bạch cầu ác tính trên ảnh hiển vi
Tác giả: Lý Hồng Thiên Ân, Trần Dương Kha, Lê Minh Hưng, Trần Đình Toàn, Trần Văn LangTóm tắt:
Vấn đề bí mật dữ liệu cá nhân trong lĩnh vực y tế dẫn đến sự khan hiếm dữ liệu huấn luyện; sự tương đồng về mặt hình thái giữa tế bào ung thư với các tế bào bình thường; đồng thời với sự mất cân bằng dữ liệu giữa các lớp càng làm tăng thêm sự phức tạp của bài toán. Bài báo này đưa ra giải pháp thực nghiệm sử dụng các mô hình về mạng neuron tích chập (CNN) và các hàm mất mát (loss function) có sẵn sử dụng tập dữ liệu C-NMC2019 của cuộc thi ISBI2019. Tập dữ liệu này bao gồm ảnh các của tế bào ung thư và của tế bào khỏe mạnh. Nghiên cứu này đề xuất một hàm mất mát đặt tên là Focal Hinge Loss (FHL) được cải tiến từ hai hàm mất mát Focal Loss và Hinge Loss, từ đó kết hợp hai mô hình CNN là DenseNet201, EfficientNetB2 để giải quyết vấn đề đặt ra. Kết quả thử nghiệm nhận được rất hiệu quả với F1 Score là 91.94%; đồng thời được xếp top 5 trên bảng xếp hạng của cuộc thi ISBI2019.
- Máy tính lượng tử, cơ hội và thách thức đối với an toàn an ninh
- Trắc nghiệm thích ứng trên máy tính: Giải pháp mới đánh giá năng lực thí sinh
- Khai thác dữ liệu trong bảo trì thiết bị
- Áp dụng mạng Bayes xây dựng mô hình dự đoán xác suất có điều kiện phức hợp = Applying Bayesian network to build predicting model for complex conditional probabilities
- Tăng tốc dựa vào GPU giải thuật phân lớp chuỗi thời gian gồm tổ hợp bộ phân lớp 1-NN kết hợp với những đô đo khoảng cách không đàn hồi và đàn hồi