Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel
Tác giả: Hoang Nhat DucTóm tắt:
Estimating punching shear capacity (PSC) of steel fibre reinforced concrete slabs (SFRCS) is a crucial task in structural design. This study investigates the performances of artificial neural networks trained by the adaptive moment estimation (Adam) method in dealing with the task of interest. To alleviate overfitting problem, decoupled weight decay (AdamW) and L2regularization (AdamL2) are used. A dataset including 140 samples has been used to train and verify the machine learning approaches. Interms of root mean square error (RMSE), Experimental results including 20 independent runs point out that predictive performances of the AdamW (RMSE = 30.60) and AdamL2(RMSE = 31.74) are better than that of the Adam (RMSE = 36.62). However, performance of a combination of AdamW and AdamL2(RMSE = 32.31) is worse than those obtained from the individual AdamW and AdamL2.
- A method for calculating flexural multi-layer reinforced concrete structures = Phương pháp tính toán kết cấu bê tông cốt thép nhiều lớp chịu uốn
- The Eurocodes : research and application for concrete structures in Vietnam context = Tiêu chuẩn châu Âu : nghiên cứu và ứng dụng cho kết cấu bê tông cốt thép trong điều kiện Việt Nam
- Interval estimation of compressive strength of concrete using artificial neural network developed with Python = Dự báo theo khoảng cường độ chịu nén của bê tông sử dụng mạng nơ-ron thần kinh nhân tạo được phát triển với Python