Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel
Tác giả: Hoang Nhat DucTóm tắt:
Estimating punching shear capacity (PSC) of steel fibre reinforced concrete slabs (SFRCS) is a crucial task in structural design. This study investigates the performances of artificial neural networks trained by the adaptive moment estimation (Adam) method in dealing with the task of interest. To alleviate overfitting problem, decoupled weight decay (AdamW) and L2regularization (AdamL2) are used. A dataset including 140 samples has been used to train and verify the machine learning approaches. Interms of root mean square error (RMSE), Experimental results including 20 independent runs point out that predictive performances of the AdamW (RMSE = 30.60) and AdamL2(RMSE = 31.74) are better than that of the Adam (RMSE = 36.62). However, performance of a combination of AdamW and AdamL2(RMSE = 32.31) is worse than those obtained from the individual AdamW and AdamL2.
- Phân hạng nguy hiểm cháy và cháy nổ cho nhà sản xuất có nguy cơ nổ bụi tại Việt Nam
- Ảnh hưởng của đường quan hệ lực cắt - chuyển vị ngang của gối cách chấn đa lớp đến hiệu quả giảm chấn của nhà cách chấn đáy có kết cấu tường gạch
- Nâng cao hiệu quả nhận dạng các tham số dao động dựa trên kỹ thuật tách nguồn mù
- Ảnh hưởng của sườn đứng đến khả năng chịu nén đúng tâm của khối xây bằng gạch đất không nung
- Nguyên nhân phá hủy bề mặt gạch tháp Khương Mỹ và giải pháp hạn chế hư hỏng gạch phục chế, sử dụng gia cường khối xây tháp trong môi trường biển