Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel
Tác giả: Hoang Nhat DucTóm tắt:
Estimating punching shear capacity (PSC) of steel fibre reinforced concrete slabs (SFRCS) is a crucial task in structural design. This study investigates the performances of artificial neural networks trained by the adaptive moment estimation (Adam) method in dealing with the task of interest. To alleviate overfitting problem, decoupled weight decay (AdamW) and L2regularization (AdamL2) are used. A dataset including 140 samples has been used to train and verify the machine learning approaches. Interms of root mean square error (RMSE), Experimental results including 20 independent runs point out that predictive performances of the AdamW (RMSE = 30.60) and AdamL2(RMSE = 31.74) are better than that of the Adam (RMSE = 36.62). However, performance of a combination of AdamW and AdamL2(RMSE = 32.31) is worse than those obtained from the individual AdamW and AdamL2.
- Thiết kế đô thị vì sức khỏe cộng đồng
- Nghiên cứu các yếu tố hấp dẫn đô thị : lấy TP. HCM làm nghiên cứu điển hình
- Nghiên cứu thực nghiệm xác định áp lực sóng xung kích trên bề mặt đất do 2 lượng nổ liên tiếp trong không khí
- Sử dụng lý thuyết biến dạng cắt tính toán động lực học của dầm bê tông cốt thanh composite aramid trên nền đàn hồi chịu tác dụng của hệ dao động di động
- Kinh nghiệm phát triển kinh tế số của một số quốc gia Đông Á và bài học tham khảo cho Việt Nam