Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel
Tác giả: Hoang Nhat DucTóm tắt:
Estimating punching shear capacity (PSC) of steel fibre reinforced concrete slabs (SFRCS) is a crucial task in structural design. This study investigates the performances of artificial neural networks trained by the adaptive moment estimation (Adam) method in dealing with the task of interest. To alleviate overfitting problem, decoupled weight decay (AdamW) and L2regularization (AdamL2) are used. A dataset including 140 samples has been used to train and verify the machine learning approaches. Interms of root mean square error (RMSE), Experimental results including 20 independent runs point out that predictive performances of the AdamW (RMSE = 30.60) and AdamL2(RMSE = 31.74) are better than that of the Adam (RMSE = 36.62). However, performance of a combination of AdamW and AdamL2(RMSE = 32.31) is worse than those obtained from the individual AdamW and AdamL2.
- Đánh giá tình trạng nhiễm trùng huyết tại đơn vị Ghép tế bào gốc- khoa Huyết học - bệnh viện Chợ Rẫy từ năm 2017 đến 6 tháng đầu năm 2024
- Đánh giá đáp ứng sau hóa trị tân hỗ trợ bằng phác đồ Docetaxel, Carboplatin và Trastuzumab ở bệnh nhân ung thư vú có thụ thể HER2 dương tính giai đoạn II, III
- Nghiên cứu tỉ lệ cắt tuyến phó giáp không chủ ý trong phẫu thuật cắt giáp và nạo hạch cổ nhóm vi tại Bệnh viện Ung Bướu Thành phố Hồ Chí Minh năm 2023
- Vai trò của thời gian nhân đôi thyroglobulin trong đánh giá tái phát, di căn ở bệnh nhân ung thư tuyến giáp thể biệt hóa
- Đánh giá bước đầu phẫu thuật đoạn chậu trong ung thư phụ khoa initial





