Artificial neural network with adaptive moment estimation training approaches for prediction of punching shear capacity of steel
Tác giả: Hoang Nhat DucTóm tắt:
Estimating punching shear capacity (PSC) of steel fibre reinforced concrete slabs (SFRCS) is a crucial task in structural design. This study investigates the performances of artificial neural networks trained by the adaptive moment estimation (Adam) method in dealing with the task of interest. To alleviate overfitting problem, decoupled weight decay (AdamW) and L2regularization (AdamL2) are used. A dataset including 140 samples has been used to train and verify the machine learning approaches. Interms of root mean square error (RMSE), Experimental results including 20 independent runs point out that predictive performances of the AdamW (RMSE = 30.60) and AdamL2(RMSE = 31.74) are better than that of the Adam (RMSE = 36.62). However, performance of a combination of AdamW and AdamL2(RMSE = 32.31) is worse than those obtained from the individual AdamW and AdamL2.
- Đánh giá sự ảnh hưởng của quản trị nguồn nhân lực trong trạng thái chuyển đổi số tòi hiệu quả hoạt động xét dưới góc độ tài chính của doanh nghiệp nhỏ và vừa trong ngành thương mại và dịch vụ : nghiên cứu trên địa bàn Hà Nội
- Weak two-scale convergence in L2 for a two-dimensional case = Hội tụ hai-kích thước yếu trong L2 cho một trường hợp hai chiều
- Strong two-scale convergence for a two-dimensional case = Hội tụ hai-kích thước mạnh cho một trường hợp hai chiều
- Applications of Google OR-Tools in solving construction management linear optimization problems = Ứng dụng công cụ Google OR-Tools trong giải các bài toán tối ưu hóa tuyến tính trong quản lý dự án xây dựng
- Transition nodal basis functions in p-adaptive finte element methods = Hàm nút cơ sở chuyển giao dùng trong phương pháp phần tử hữu hạn thích nghi loại p





